
CSCI-101 Programming I

Exam 3

Instructions

Please follow the rules below as you work through this exam.

• Please leave all notebooks and electronics (including cell phones and smart watches) at
the side of the room.

• This is a closed book/closed notes exam.

• Do not spend too much time on any one problem. You have 50 minutes to complete this
exam.

• Partial credit is awarded.

• Please write legibly. If I cannot read your answers, I cannot give you credit.

• Please write your answers in the order specified. If you need additional paper, please
raise your hand to ask your instructor for additional paper.

• Your code must be written to behave as specified.

• You must properly use all identifiers that are explicitly stated.

• Please use proper and consistent coding conventions (indentation, naming identifiers,
etc.).

• Please stay in your seat until you are ready to hand in your exam. You may leave when
you are finished.

• Once you leave the testing room you cannot return until the exam is over. If you need to
use the restroom, please use it now.

A color can be defined by a red component, a green component and a blue component. We can
assume the value of each component is between 0 and 255. For example, the color red can be
defined as (255, 0, 0) where the red component is the highest possible value (255) while the
green and blue components are zero.

RGB.java

Write a class named RGB that models a color defined by a red component, a green component
and a blue component.. The class should contain the following.

1. Three private fields that hold the color components.

2. A constructor that takes three values as arguments and initializes the corresponding fields.

3. Getters and setters for each of the fields.

4. A method named toString that overrides the Object class' toString method. The method

should return a string containing the three components separated by commas.

5. A method named equals that overrides the Object class' equals method. Two instances of

the RGB class are considered equal if their respective components are equal.

image.txt

Suppose a file named image.txt contains the rgb color values for each pixel of an image. Each
pixel color is written on a separate line. The values of a color's components are written with
commas between them.

Sample Input File

255,0,0

128,128,7

13,64,16

34,120,241

Note: the above sample input file is a sample. image.txt can contain any arbitrary number of
pixel colors, not necessarily 4 as shown above.

Exam3App.java

Write a class named Exam3App that satisfies the following.

1. The class contains a method named printColors that has 2 parameters. The first parameter
named array holds a reference to an array of RGB objects. The second parameter named k
holds an integer. The method should use the RGB class' toString method to print to the
screen the color components of the first k colors in the array.

2. Write a method named main that does the following:

• Allocate an array that can hold 256 RGB references.

• Declare an integer named count that keeps track of the number of RGB references that

have been added to the array.

• Create a Scanner that can read the data in image.txt.

• Read the data in image.txt and store the data as RGB objects in the array.

• Call printColors to print the components of all of the colors that are stored in the array.

class RGB {

 private int r = 0;

 private int g = 0;

 private int b = 0;

 public RGB(int r, int g, int b) {

 this.r = r;

 this.g = g;

 this.b = b;

 }

 public int getRed() { return r; }

 public int getGreen() { return g; }

 public int getBlue() { return b; }

 public void setRed(int r) { this.r = r; }

 public void setGreen(int g) { this.g = g; }

 public void setBlue(int b) { this.b = b; }

 @Override

 public String toString() {

 return String.format("(%d,%d,%d)", r, g, b);

 }

 @Override

 public boolean equals(Object obj) {

 if(!(obj instanceof RGB)) {

 return false;

 }

 RGB that = (RGB) obj;

 return (this.r == that.r && this.g == that.g && this.b == that.b);

 }

}

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

class Exam3App {

 public static void main(String[] args) {

 RGB[] arr = new RGB[256];

 int count = 0;

 Scanner input = null;

 try {

 input = new Scanner(new File("image.txt"));

 }

 catch (FileNotFoundException e) {

 return;

 }

 input.useDelimiter(",|\n");

 while(input.hasNext()) {

 int r = input.nextInt();

 int g = input.nextInt();

 int b = input.nextInt();

 arr[count++] = new RGB(r,g,b);

 }

 for(int i = 0; i < count; i++) {

 System.out.println(arr[i].toString());

 }

 }

 public void printColors(RGB[] array, int k) {

 for(int i = 0; i < k; i++) {

 System.out.println(array[i].toString());

 }

 }

}

